JavaScript机器学习入门:回归(数学 + 源代码)
发布于 2024年5月 创建者:Eincode by Filip Jerga, Filip Jerga 格式:MP4 | 视频: h264, 1280×720 | 音频: AAC, 44.1 KHz, 2 声道 类型:电子学习 | 语言:英语 | 时长:88讲(13小时13分钟) | 大小:6.25 GB
探索使用JavaScript和React JS进行实际编码、数据分析和可视化,并掌握数学背景知识。
学习内容
- 理解并应用线性和多元回归技术
- 使用Node.js和React.js构建并使用回归模型
- 掌握回归算法背后的关键数学概念
- 创建用于实时数据绘图和回归分析的React应用程序
要求
任何编程语言的基础知识
描述
通过《JavaScript机器学习:回归任务(数学+源代码)》深入学习机器学习的世界。本课程专注于线性回归,将理论知识与实际编码相结合,教你如何使用JavaScript构建和应用线性回归模型。
学习内容:
- 线性回归核心原理:从线性回归的基础开始,扩展到多元回归技术。了解这些模型如何根据过去的数据预测未来的结果。
- 动手编码:直接参与实际编码示例,使用JavaScript进行计算,使用Node.js进行计算部分,并使用React.js进行动态数据可视化。
- 简化数学:使模型背后的必要数学知识易于理解,重点是让你能够有效地理解和实施算法。
- 项目驱动学习:从零开始构建一个React应用程序,不仅绘制数据,还计算回归参数并实时可视化这些计算。通过实际开发经验巩固你的学习。
- 现实应用:学习使用你构建的模型预测现实世界的结果。了解残差的重要性以及如何用统计指标如R平方、平均绝对误差(MAE)和均方误差(MSE)量化模型的准确性。
- 深入的高级主题:超越基础回归,学习通过多元回归分析、矩阵运算和模型选择技术处理复杂数据类型。
课程结构:
本课程包含80多个详细的视频讲座,逐步引导你学习JavaScript的机器学习:
- 介绍与设置:从必要工具和配置的概述开始。了解回归中的基础术语和概念。
- 互动练习:每个新概念都配有实际编码练习,通过实践将理论付诸实践。
- 深入项目:在广泛的现实项目中应用所学知识。通过复杂的回归模型预测薪资范围或估算驾驶汽车价格。
为什么选择本课程?
- 针对性学习:我们专注于线性回归,提供对最常见机器学习技术的深入理解。
- 实用JavaScript使用:通过使用许多开发者熟悉的JavaScript,本课程将机器学习集成到Web应用程序和后端服务中变得简单易懂。
- 项目驱动的方法:项目设计反映了真实的行业问题,为你的职业生涯中的技术挑战做好准备。
Machine Learning Primer with JS: Regression (Math + Code)
Published 5/2024
Created by Eincode by Filip Jerga,Filip Jerga
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 88 Lectures ( 13h 13m ) | Size: 6.25 GB
Explore practical coding, data analysis, and visualization with JavaScript and React JS, plus get Math background.
What you’ll learn:
Understand and apply linear and multiple regression techniques.
Build and use regression models with Node js and React js
Grasp the key mathematical concepts behind regression algorithms.
Create a React app for real-time data plotting and regression analysis.
Requirements:
Base knowledge of any programming language
Description:
Dive into the world of machine learning with Machine Learning with JS: Regression Tasks (Math + Code). This course offers a focused look at linear regression, blending theoretical knowledge with hands-on coding to teach you how to build and apply linear regression models using JavaScript.What You Will Learn:Core Principles of Linear Regression: Begin with the fundamentals of linear regression and expand into multiple regression techniques. Discover how these models can predict future outcomes based on past data.Hands-On Coding: Engage directly with practical coding examples, utilizing JavaScript. You’ll use Node.js for the computational aspects and React.js for dynamic data visualization.Simplified Mathematics: We make the essential math behind the models accessible, focusing on concepts that allow you to understand and implement the algorithms effectively.Project-Based Learning: Build a React application from scratch that not only plots data but also computes regression parameters and visualizes these computations in real-time. This hands-on approach will help solidify your learning through actual development experience.Real-World Applications: Learn to forecast real-world outcomes using the models you build. Understand the importance of residuals and how to quantify model accuracy with statistical measures such as R-squared, Mean Absolute Error (MAE), and Mean Squared Error (MSE).Advanced Topics in Depth: Go beyond basic regression with sessions on handling complex data types through multiple regression analysis, matrix operations, and model selection techniques.Course Structure:This course includes over 80 detailed video lectures that guide you through every step of learning machine learning with JavaScript:Introduction and Setup: Start with an overview of the necessary tools and configurations. Understand the foundational terms and concepts in regression.Interactive Exercises: Each new concept is paired with practical coding exercises that reinforce the material by putting theory into practice.In-Depth Projects: Apply what you’ve learned in extensive, real-world projects. Predict salary ranges based on job data or estimate car prices with sophisticated regression models.Why Choose This Course?Targeted Learning: We focus on linear regression to provide a thorough understanding of one of the most common machine learning techniques.Practical JavaScript Use: By using JavaScript, a language familiar to many developers, this course demystifies the process of integrating machine learning into web applications and backend services.Project-Driven Approach: The projects are designed to reflect real industry problems, preparing you for technical challenges in your career.
扫码免费下载