满园春色关不住
一枝红杏出墙来

使用Python优化MLOps、AIOps和DevOps工作流程课程 (英文)

MLOps – AIOps – DevOps的Python编程

发布日期:2024年5月 创建者:Manifold AI Learning ® 格式:MP4 | 视频:h264, 1280×720 | 音频:AAC, 44.1 KHz, 2声道 类型:电子学习 | 语言:英语 | 时长:126讲 (17小时6分钟) | 大小:7.1 GB

使用Python优化MLOps、AIOps和DevOps工作流程

你将学到:

  • 自信地将Python应用于基础设施和操作任务:使用核心原则、文件处理、模块和面向对象编程编写干净、模块化的Python源代码。
  • 自动化文件相关操作:高效操作、加密和处理DevOps、MLOps和AIOps中常用的各种文件格式。
  • 创建交互式命令行应用程序:使用Python构建CLI以自动化任务并简化工作流程。
  • 远程高效管理Linux系统:使用Python的Fabric库进行远程执行和psutil进行系统监控。
  • 创建、管理和发布Python包:将源代码组织成可重用的包并在PyPI等平台上分发。
  • 使用Docker进行应用部署:了解Docker镜像创建、容器化和部署。
  • 使用GitHub Actions自动化工作流程:设计和配置CI/CD管道。
  • 利用AWS服务实现CI/CD工作流程:设计利用S3进行存储和EC2实例进行部署的管道。
  • 为MLOps项目编写测试:使用Pytest确保MLOps的可靠性和可维护性。
  • 使用源代码配置和管理基础设施:应用Pulumi的Python SDK实现基础设施即源代码(IaC)原则。
  • 体验完整的MLOps管道:构建一个集成课程中学习的工具和概念的端到端MLOps解决方案。
  • 设置连续监控以提高可见性:使用Prometheus和Grafana实现监控和报警。

要求:

  • 不需要编程经验
  • 只需一台笔记本电脑和命令行界面即可编码

课程描述:

掌握简化DevOps工作流程、实施智能MLOps管道并优化AIOps实践所需的关键Python技能。本综合课程深入探讨Python基础知识、文件自动化、命令行掌握、Linux工具、包管理、Docker、AWS上的CI/CD、基础设施自动化以及高级监控和日志记录技术。

你将发展的关键技能:

  • Python基础:深入理解变量、数据类型、控制结构、函数、面向对象编程以及编写干净Python源代码的最佳实践。
  • 文件自动化:轻松操作文本、二进制和各种文件格式(如CSV、JSON等),学习安全文件处理的加密策略。
  • 命令行能力:使用argparse、Click和fire等Python库构建命令行接口并自动化任务。
  • Linux集成:使用Python的Fabric和psutil库高效与Linux系统交互。
  • 包管理:学习创建、管理和发布自己的Python包以简化工作流程。
  • Docker专家:掌握Docker容器化实现一致且可移植的部署。
  • GitHub Actions自动化:为你的Python项目创建和定制GitHub Actions工作流程。
  • AWS基础:设置AWS环境,使用S3存储桶,管理EC2实例,并在AWS上设计CI/CD管道。
  • Pytest能力:为你的MLOps项目编写稳健且可维护的测试。
  • Pulumi的基础设施即源代码:使用Pulumi的Python SDK自动化基础设施配置和管理。
  • MLOps实战:参与展示完整MLOps管道的实践演示。
  • 监控和日志记录:使用Prometheus和Grafana设置连续监控,获得系统的可操作见解。

适合人群:

  • 希望简化DevOps流程的开发人员
  • 希望提高MLOps实践的数据科学家和ML工程师
  • 希望实施AIOps策略的IT专业人士
  • 渴望掌握用于基础设施管理和自动化的Python的任何人

Python Programming for MLOps – AIOps – DevOps

Published 5/2024
Created by Manifold AI Learning ®
MP4 | Video: h264, 1280×720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English | Duration: 126 Lectures ( 17h 6m ) | Size: 7.1 GB

Optimize MLOps, AIOps, and DevOps Workflows with Python

What you’ll learn:
Apply Python confidently to infrastructure and operations tasks: Write clean, modular Python code using core principles, file handling, modules, and OOP.
Automate file-related operations: Efficiently manipulate, encrypt, and work with various file formats commonly used in DevOps, MLOps, and AIOps.
Create interactive command-line applications: Build CLIs with Python to automate tasks and streamline workflows.
Effectively manage Linux systems remotely: Use Python’s Fabric library for remote execution and psutil for system monitoring
Create, manage, and publish Python packages: Organize code into reusable packages and distribute them on platforms like PyPI.
Utilize Docker for application deployments: Understand Docker image creation, containerization, and deployment.
Automate workflows with GitHub Actions: Design and configure CI/CD pipelines using GitHub Actions.
Implement CI/CD workflows utilizing AWS services: Design pipelines that leverage S3 for storage and EC2 instances for deployment.
Write tests specifically for MLOps projects: Ensure MLOps reliability and maintainability using Pytest.
Provision and manage infrastructure using code: Apply Infrastructure as Code (IaC) principles with Pulumi’s Python SDK.
Experience a complete MLOps pipeline: Build an end-to-end MLOps solution integrating tools and concepts learned throughout the course.
Set up continuous monitoring for improved visibility: Implement monitoring and alerting using Prometheus and Grafana.

Requirements:
No Programming Experience is needed
Just a Laptop and CLI to code

Description:
Master the essential Python skills you need to streamline DevOps workflows, implement intelligent MLOps pipelines, and optimize AIOps practices. This comprehensive course dives into Python fundamentals, file automation, command-line mastery, Linux utilities, package management, Docker, CI/CD with AWS, infrastructure automation, and even advanced monitoring and logging techniques.Key Skills You’ll Develop:Python Foundations: Get a robust understanding of variables, data types, control structures, functions, object-oriented programming, and best practices for clean Python code.File Automation: Effortlessly manipulate text, binary, and various file formats (like CSV, JSON, and more) used in MLOps, AIOps, and DevOps projects. Learn encryption strategies for secure file handling.Command-Line Power: Build command-line interfaces and automate tasks with Python libraries like argparse, Click, and fire.Linux Integration: Interact with Linux systems effectively using Python’s Fabric and psutil libraries.Package Management: Learn to create, manage, and publish your own Python packages to streamline your workflows.Docker Expertise: Master Docker containerization for consistent and portable deployments.GitHub Actions Automation: Create and customize GitHub Actions workflows for your Python projects.AWS Essentials: Set up your AWS environment, work with S3 buckets, manage EC2 instances, and design CI/CD pipelines on AWS.Pytest Power: Write robust and maintainable tests for your MLOps projects using Pytest.Infrastructure as Code with Pulumi: Automate infrastructure provisioning and management using Pulumi’s Python SDK.MLOps in Action: Participate in a hands-on demo showcasing a complete MLOps pipeline.Monitoring & Logging: Set up continuous monitoring with Prometheus and Grafana for actionable insights into your systems.Who This Course Is For:Developers interested in streamlining DevOps processesData scientists and ML engineers looking to enhance MLOps practicesIT professionals wanting to implement AIOps strategiesAnyone eager to master Python for infrastructure management and automation


扫码免费下载

此处有隐藏内容--请扫描下方二维码查看

 

百度网盘下载
登录后免费下载提取码:登录后可见
赞(0)
未经允许不得转载:红杏破解 » 使用Python优化MLOps、AIOps和DevOps工作流程课程