Amazon Bedrock – AWS生成式AI完整指南
发布日期:2024年5月
格式:MP4 | 视频:h264, 1920×1080 | 音频:AAC, 44.1 KHz
语言:英语 | 大小:4.14 GB | 时长:7小时26分钟
课程简介:
学习如何使用AWS和Amazon Bedrock部署可扩展、可靠和安全的生成式AI应用程序(Python和TypeScript)。
你将学到:
了解生成式AI的基本原理,包括其应用、算法及其在各行业中的潜在影响。
熟悉AWS生态系统,包括EC2、S3、Lambda等核心服务,部署和管理生成式AI应用所必需的服务。
了解Amazon Bedrock托管服务及其功能和能力。
按步骤指导创建支持生成式AI工作负载的必要基础设施。
使用你喜欢的编程语言(Python或TypeScript)开发基于AWS的生成式AI应用程序。
轻松使用Bedrock知识库开发RAG应用。
将LangChain与Amazon Bedrock集成(Python和TypeScript源代码示例)。
要求:
基本的机器学习和AI知识。
熟练掌握至少一种常用于AI和数据科学的编程语言,如Python。
推荐基本了解AWS服务和基础设施,包括熟悉EC2、S3、Lambda、IAM和VPC等服务。
基本的编程知识——Python或TypeScript。
课程描述:
释放生成式AI在AWS上的力量,欢迎加入《Amazon Bedrock – AWS生成式AI完整指南》,这是你掌握尖端AI技术和Amazon Web Services(AWS)无与伦比的可扩展性的途径。在本课程中,你将深入了解生成式AI,利用其潜力在各个领域创建创新解决方案。无论你是经验丰富的数据科学家、有远见的企业家,还是好奇的开发者,这门课程将助你解锁无限可能。
主要亮点:
实践操作:通过实际练习,使用Python的boto3、JavaScript SDKs和TypeScript,结合VSCode调试,实现无缝开发。
文本和图像模型:探索文本生成的魔力,深入了解最先进的图像生成模型,掌握向量数据库的嵌入技术。
高级应用:从LangChain到RAG应用和文档处理,你将探索广泛的高级应用,帮助你自信地应对复杂挑战。
Amazon Bedrock精通:深入了解Amazon Bedrock,这是在AWS上部署可扩展、可靠和安全生成式AI应用的游戏规则改变者。实践部分确保你熟练掌握Bedrock,准备好应对任何项目。
课程涵盖的关键主题包括:
Amazon Bedrock介绍及控制台和CLI访问设置
Python和TypeScript的源代码示例
Bedrock与LangChain的集成
构建具有历史记录的Amazon Bedrock聊天机器人
构建基于Amazon Bedrock的图像API
了解AI的本质:使用Bedrock进行嵌入
使用Bedrock知识库构建最先进的RAG应用
微调模型并创建自定义模型
为什么选择这门课程?
专家指导:由在AI和AWS领域有多年经验的行业专家授课。
实践方法:通过指导练习和真实案例研究获得实践经验。
不要错过这个机会,成为AI创新世界的先锋!立即报名,开始你的旅程,成为Amazon Bedrock和AWS生成式AI专家。超越理论,从当今编程需求出发,向活跃的讲师学习!
Amazon Bedrock – The Complete Guide To Aws Generative Ai
Published 5/2024
MP4 | Video: h264, 1920×1080 | Audio: AAC, 44.1 KHz
Language: English | Size: 4.14 GB | Duration: 7h 26m
Learn to Deploy Scalable, Reliable, and Secure Generative AI Apps Using AWS and Amazon Bedrock (Python and TypeScript)
What you’ll learn
Understand the fundamentals of Generative AI, including its applications, algorithms, and potential impact across various industries.
Gain familiarity with the AWS ecosystem, including core services such as EC2, S3, Lambda, and more, essential for deploying and managing Generative AI apps
Learn about Amazon Bedrock Managed Service, its features nd capabilities
Step-by-step guidance on creating the necessary infrastructure to support Generative AI workloads.
Develop Generative AI apps backed by AWS with your preferred programming language (Python or TypeScript))
Easily develop RAG apps with Bedrock Knowledge bases
Integrate LangChain with Amazon Bedrock (Python and TypeScript code examples)
Requirements
Basic Knowledge of Machine Learning and AI
Proficiency in at least one programming language commonly used in AI and data science, such as Python
Basic understanding of AWS services and infrastructure is recommended, including familiarity with services like EC2, S3, Lambda, IAM, and VPC.
Basic programming knowledge – Python or TypeScript
Description
Unleash the Power of Generative AI on AWS with This Comprehensive Course!Welcome to Amazon Bedrock – The Ultimate Guide to AWS Generative AI – your gateway to mastering the fusion of cutting-edge AI technology and the unparalleled scalability of Amazon Web Services (AWS).In this course, you’ll dive deep into the world of Generative AI, harnessing its potential to create innovative solutions across diverse domains. Whether you’re a seasoned data scientist, a visionary entrepreneur, or a curious developer, this course is your ticket to unlocking limitless possibilities.Key Highlights:Hands-On Practice: Dive right into real-world scenarios with practical exercises using Python’s boto3, JavaScript SDKs, and TypeScript, coupled with VSCode debugging for seamless development.Text and Image Models: Explore the magic of text generation with chatbots, delve into image generation with state-of-the-art models, and master embedding techniques for vector databases.Advanced Applications: From LangChain to RAG apps and document processing, you’ll explore a wide array of advanced applications, empowering you to tackle complex challenges with confidence.Amazon Bedrock Mastery: Get up close and personal with Amazon Bedrock – the game-changer for deploying scalable, reliable, and secure Generative AI applications on AWS. Practice sections ensure you’re well-versed with Bedrock, ready to tackle any project.Key topics covered in this course include:Amazon Bedrock introduction and setup for console and CLI accessCode examples with Python and TypeScriptIntegration between Bedrock and LagChainBuilding an Amazon Bedrock chat bot with historyBuilding Image APIs backed by Amazon BedrockLearn all about the essence of AI: embeddings with BedrockBuild state of the art RAG app with Bedrock Knowledge basesFine tune models and create your custom models.Why Choose This Course?Expert Guidance: Learn from industry experts with years of experience in AI and AWS.Practical Approach: Gain hands-on experience with guided exercises and real-world case studies.Don’t miss out on this opportunity to become a trailblazer in the world of AI innovation! Enroll now and embark on your journey to becoming a Generative AI expert with Amazon Bedrock and AWS. Go beyond the theory and learn from active instructors, aligned with today’s programming demands!Let’s revolutionize the future together!
Overview
Section 1: Course Introduction
Lecture 1 How to take this course
Lecture 2 Udemy tips
Lecture 3 Tools setup
Section 2: Introduction to Amazon Bedrock
Lecture 4 Section intro
Lecture 5 What is Amazon Bedrock?
Lecture 6 Bedrock console overview
Lecture 7 AWS configure – CLI access
Lecture 8 Bedrock API – Boto3 – Python
Lecture 9 Bedrock API – JS SDK – TypeScript
Lecture 10 Optional – VSCode debug
Section 3: Working with text models
Lecture 11 Section intro
Lecture 12 Amazon Bedrock text models intro
Lecture 13 Understanding tokens
Lecture 14 Text models parameters
Lecture 15 Bedrock text models – Python
Lecture 16 Bedrock text models – TypeScript
Lecture 17 Prompt engineering
Lecture 18 Project: ChatBot
Lecture 19 ChatBot with History – Python
Lecture 20 ChatBot with History – TypeScript
Section 4: Amazon Bedrock Image models
Lecture 21 Section intro
Lecture 22 Image models intro
Lecture 23 Stability AI parameters
Lecture 24 Stability AI images – Python and TypeScript
Lecture 25 Titan model image generation
Lecture 26 Titan model image editing
Section 5: Amazon Bedrock embedding models
Lecture 27 Section intro
Lecture 28 Embeddings and Similarity
Lecture 29 Embedding models – Python and TypeScript
Lecture 30 Text embeddings – Python
Lecture 31 Text embeddings – TypeScript
Lecture 32 Image embeddings – Python
Lecture 33 Image embeddings – TypeScript
Lecture 34 Vector databases
Section 6: Halfway discussion
Lecture 35 Section intro
Section 7: Project RAG app (local)
Lecture 36 Section intro
Lecture 37 Langchain intro
Lecture 38 First Chain – Python
Lecture 39 First Chain – TypeScript
Lecture 40 What is a RAG app?
Lecture 41 Basic RAG app – Python
Lecture 42 Basic RAG app – TypeScript
Lecture 43 Document app – Python
Lecture 44 Document app – TypeScript
Section 8: Practice: Text API
Lecture 45 Section intro
Lecture 46 Project architecture
Lecture 47 Summary Lambda – Python
Lecture 48 Summary Lambda test – Python
Lecture 49 Summary Lambda – TypeScript
Lecture 50 Summary Lambda test – TypeScript
Lecture 51 ApiGateway and Lambda integration
Lecture 52 IAC: Summary api – CDK Python
Lecture 53 IAC: Summary api – CDK TypeScript
Section 9: Practice: Image API
Lecture 54 Section intro
Lecture 55 Project architecture
Lecture 56 Image Lambda – Python
Lecture 57 Lambda Test – Python
Lecture 58 Image Lambda – TypeScript
Lecture 59 Lambda Test – TypeScript
Lecture 60 ApiGateway and Lambda integration
Lecture 61 IAC: Image api – CDK Python
Lecture 62 IAC: Image api – CDK TS
Section 10: Practice: Bedrock knowledge bases
Lecture 63 Section intro
Lecture 64 What is Bedrock knowledge base
Lecture 65 Bedrock Knowledge base model access
Lecture 66 New console account creation
Lecture 67 Creating a knowledge base
Lecture 68 RAG Lambda – Python
Lecture 69 RAG Lambda – TypeScript
Lecture 70 RAG Lambda – AWS test
Lecture 71 RAG ApiGateway integration
Lecture 72 Resorces deletion
Section 11: Custom Amazon Bedrock models
Lecture 73 Section intro
Lecture 74 Fine tuning
Lecture 75 Custom models – Amazon Bedrock console
Section 12: Ending section
Lecture 76 Thank you!
Section 13: Optional: AWS Recap
Lecture 77 Section intro
Lecture 78 AWS IAM presentation
Lecture 79 AWS Lambda presentation
Lecture 80 AWS API Gateway presentation
Section 14: Optional: Infrastructure as code
Lecture 81 Section intro
Lecture 82 AWS CloudFormation
Lecture 83 AWS CDK install
Lecture 84 AWS CDK with Python
Lecture 85 AWS CDK with TypeScript
Lecture 86 Cleanup
Professionals keen on expanding their skill set in AI and machine learning, particularly in the domain of Generative AI,Developers aiming to explore the intersection of AI and cloud computing,Researchers and academics interested in exploring practical applications of Generative AI,IT professionals responsible for managing cloud infrastructure and ensuring its security and scalability
扫码免费下载